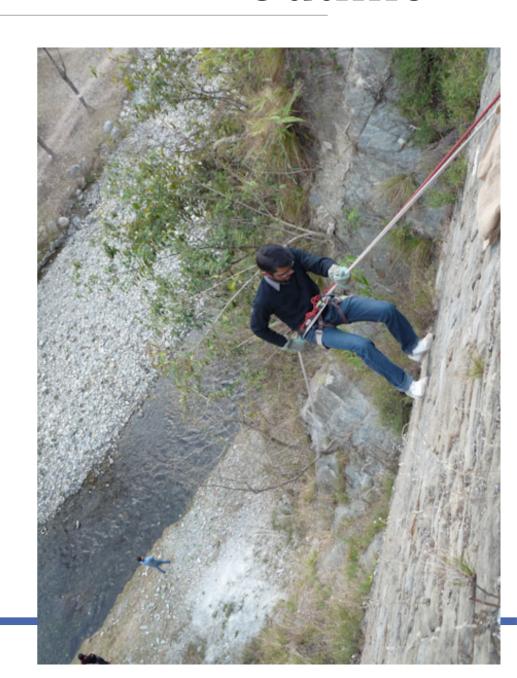


# FarmerZone Distributed Machine Intelligence for Sustainable Food Security

Prof. Timothy A. Gonsalves

Dr. Srikant Srinivasan IIT Mandi


tag@iitmandi.ac.in

9 Feb 18 FCNCT-2018



## Outline

- Development
- Sustainability
- Food Security
- FarmerZone
- Conclusions





#### India - a land of contrasts

Dense urban areas 10,000 people/sq. km 400 m population Sparse rural areas 600,000 villages pop. 1,000-25,000

800 m rural population

Large affluent population (Western levels)

Very much larger middle and lower-middle class

Development is essential



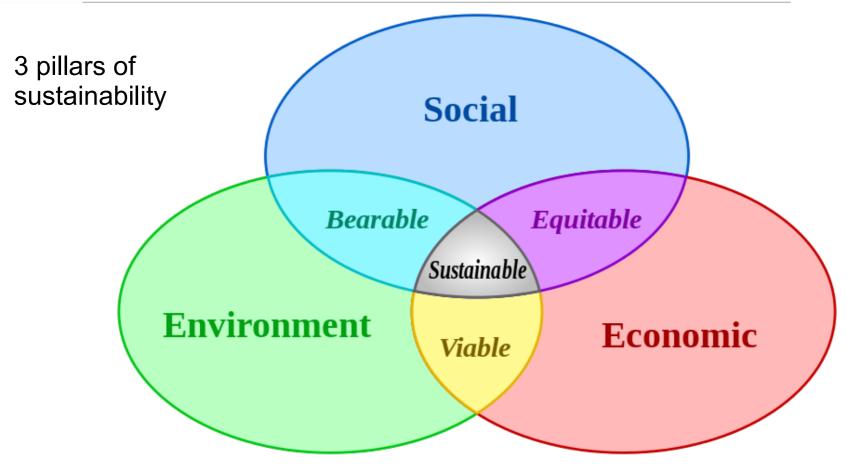


## Disruptive Development

#### **Green Revolution**

- Pluses:
  - eradicated famines that used to kill millions
  - eliminated hunger for most Indians
- Minuses:
  - Health hazards of pesticides and fertilisers
  - Loss of bio-diversity
- Conclusions:
  - Pluses far outweigh minuses
  - Further progress by organic farming, precision farming, etc




## ... Disruptive Development

#### **Mobile Phones**

- Pluses:
  - Teledensity increased from 0.8% in 1990 to 93% in 2017
  - Transformed life in rural and urban India
- Minuses:
  - Disrupting social boundaries, distraction, health hazards, ...
  - Hazardous E-waste
- Conclusions:
  - Pluses far outweigh minuses



## Sustainable Development



"improves the quality of human life while living within the carrying capacity of supporting eco-systems"

https://en.wikipedia.org/wiki/Sustainability



## World Food Security

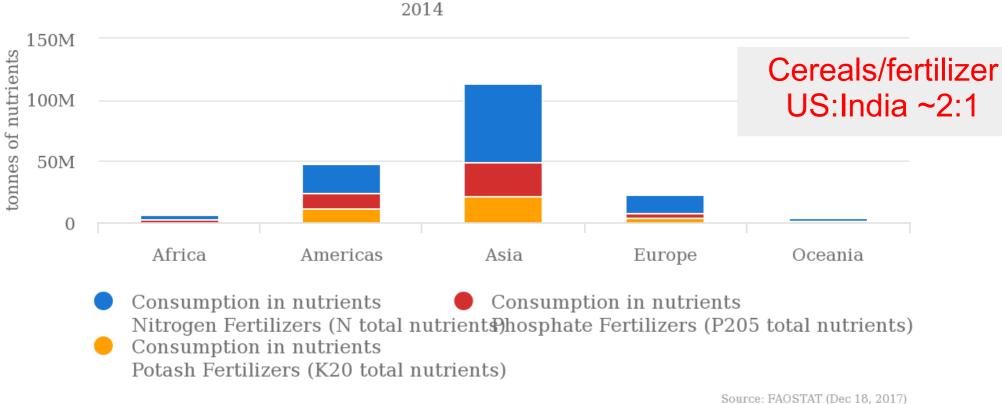
- By 2050, world's population increase 34% to 9.1 billion Nearly all in developing countries
- Annual cereal production needs to rise 50% to 3 billion tonnes from 2.1 billion today
- Studies estimate that the aggregate negative impact of climate change on African agricultural output up to 2080-2100 could be 15% 30%





## Challenges of Indian Agriculture

- Agricultural growth rate has reduced to 1.7% in the last three years
- Land degradation a major threat to India's food and environmental security
  - Large tracts of farmlands in India barren due to imbalanced fertilizer use, excessive use of a single fertilizer, urea
  - About 30% of the 5,723 administrative blocks in the country report groundwater dropping to unsustainable levels
- Increasingly, farming not seen as a viable job for rural youth






## Challenges of Indian agriculture

Land degradation is a major threat to India's food and environmental security

#### Fertilizers consumption in nutrients





## **Precision Agriculture**

#### Precision Agriculture:

- Farming management: observing, measuring and responding to inter- and intra-field variability in crops
- Farming practices: application of fertilisers and pesticides when and where needed

## Precision Agri → can feed world population for decades with current resources



Bleicher, "Farming By the Numbers", *IEEE Spectrum*, June 2013 McBratney, Whelan, & Ancev, "Future Directions of Precision Agriculture". *Precision Agriculture*, 6, 7-23, 2005.

## IoT for Precision Agiculture



Solar-powered sensors in a corn field



## Technology Disruptions for Precision Agriculture

## IoT: Inexpensive sensors connected to Internet Weather stations:

- IMD: Rs. 10s lakhs each, in major towns, district HQ
  - Highly accurate
- IoT: Rs. 1,000s each, in every farm or field
  - Less accurate
  - Correct using statistical software

#### Likewise, soil moisture sensors, web cameras, ...

- Costs declined from Rs. lakhs to Rs. 1,000s
- Long-life with batteries/solar-power
- ⇒ Vast quantities of data about every locality



## ... Technology Disruptions

#### **Cloud Storage and Computing**

Easy, world-wide sharing of data

#### Data Analytics

 Vast amounts of inaccurate data ==> de-noise to improve accuracy

#### Machine Learning

- Given large number of case histories, ML algorithms identify patterns to make predictions
- Learns from experience



## ... Precision Agriculture

Goal: define a decision support system for whole farm management to optimise returns on inputs with minimal use of resources

Study farm-level conditions of soil, environment, and monitor plant growth, build Machine Learning AI models to

- Relate productivity with geography, environment, water, fertilizer
- Early warning of stresses and disease
- Determine ideal crop variety specific to the locality
- Determine best practices including crop rotation
- Fill gaps in online data



## Multiple Sources of Agri Data

| Sample of Data Providers         |                                                  |                                              |                                | Goverment subsidy                                           | Very influential player with                                                                 |
|----------------------------------|--------------------------------------------------|----------------------------------------------|--------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Data Provider                    | Type of Data                                     | Note                                         | NABARD                         | data Subsidies<br>Assistance Schemes                        | lot of data and resources                                                                    |
| ISRO/NASA                        | Satellite images                                 | Legacy and current multi-spatial and         | MoA                            | Diverse data                                                | Legacy, current                                                                              |
| ISKO/NASA                        |                                                  | temporal.                                    | MoRD (state and                |                                                             | Deep data about rural populations and economy                                                |
| Data.gov.in                      | Agri Data: Market prices, agri schemes progress, | C                                            | NSSO                           | Household data, income, spending patterns, etc.             | Legacy and Periodic. Diverse data at high granularity                                        |
| IMD                              | Weather data                                     | Legacy, current,                             |                                | Irrigation data, various schemes to improve water resources | Data Provider                                                                                |
| State Revenue departments        | Land records<br>Harvest Data                     | prediction<br>Legacy and updates<br>Seasonal | Ministry of<br>Water Resources |                                                             |                                                                                              |
| Plant Village                    | Crowdsourced/                                    | Wide variety of plants.                      |                                |                                                             |                                                                                              |
| Trant vinage                     | curated data                                     | Images, pest/disease identification info     | Central Ground<br>Water Board  | Ground Water<br>Survey Data                                 | Legacy data                                                                                  |
| ICAR                             | Package of Practices Advisory                    | Current                                      |                                | Soil Health card data                                       | Legacy data of 1.1 crore<br>SHCs and data from<br>ongoing and periodic soil<br>tests         |
| Agricultural Marketing Companies | Produce price information                        | Legacy Current                               | Ministry of Agriculture        |                                                             |                                                                                              |
|                                  |                                                  |                                              | TAFE/Mahindra<br>/ ITC         | Farm extension data                                         | Many Agri companies will<br>be interested in making<br>their data open in such a<br>platform |

A variety of formats (offline/online), cumbersome procedures



#### Communications

#### **Today**

- Near universal availability of intermittent shared wireless at 10s-100s kb/s
- Network failures and congestion are common 2035
- Universal availability of shared wireless at 1-100 Mb/s
- Congestion and failures will still cause "intermittent" behaviour for high-bandwidth uses



### Personal Hardware

| Parameter                     | 2015              | 2035*                      |  |
|-------------------------------|-------------------|----------------------------|--|
| Pocket-sized device           | Lava 356 phone    | XYZ digital assistant      |  |
| CPU                           | 1 core, 1 GHz     | 8,000 core, 1 GHz          |  |
| RAM                           | 0.5 GB            | 4 TB                       |  |
| Storage                       | 32GB              | 128 TB                     |  |
| Network (wireless from telco) | 100 kb/s shared   | 100 Mb/s shared            |  |
| Display                       | 2"x2"             | 10"x10" foldable           |  |
| Security                      | PIN<br>(insecure) | Biometric<br>(unbreakable) |  |
| Cost (in 2015 Rs.)            | Rs. 4,500         | Rs. 2,000                  |  |

2035: Cradle-to-grave pocket device = 8,000

today's laptops \* Based on Moore's Law



### Fundamental Laws (informally)

Moore's Law: the performance of computer hardware doubles every 1.5 years

Metcalfe's Law: the usefulness of a network is proportional to the square of the number of users

Law of Large Numbers: behaviour of a large population tends to a predictable normal distribution

==> Machine learning AI



#### Pervasive Cloud?

- Pervasive Cloud for all purposes Gmail, Flickr, Facebook, Aadhaar, Amazon, Flipkart, National Digital Repository, PayTM, Visa, Wikipedia, Youtube, Github, ...
- Benefits are obvious:
  - Seamless, inexpensive access to information, communication, computation, storage, entertainment for everyone, everywhere
  - Bridge the digital divide

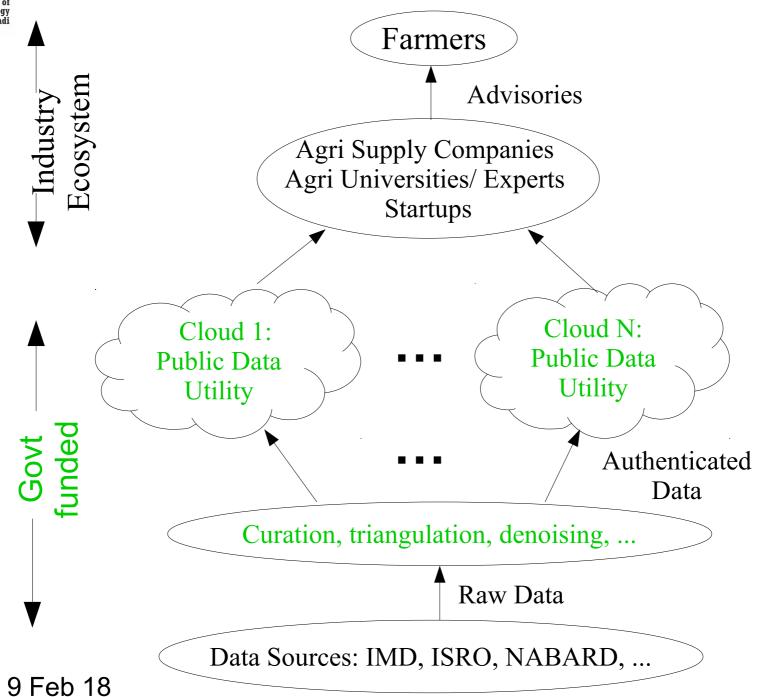
FarmerZone a pervasive cloud for India's farmers



### FarmerZone: A Public Agri-Data Utility

## FarmerZone: a DBT Initiative

An intuitive cloud-based platform that will collect, collate and curate field and remotely-sensed data with market intelligence to create smart agriculture solutions for small farmers.


A Market Zone will connect farm produce to viable markets.

### **Expected Outcomes**

Improved crop yields, smart crop choices, disaster preparedness, reliable market access and improved livelihoods for smallholder farmers.



#### FarmerZone: A DBT Initiative





## IIT Mandi + CPRI: Pilot Project

#### IIT Mandi

- Develop and operate a FarmerZone for potato farmers in Himachal and Punjab
- Linkages with farmer coops, farm supply industry
- Innovation in machine learning for advisories
- Architecture for a national federation of FarmerZones

#### Central Potato Research Institute

- Develop data models to enhance productivity and utilisation of potato
- Provide crop/pest-control/etc data for different seed varieties developed by the Institute
- Training in research methodologies and modern technologies for potato production



#### FarmerZone at IIT Mandi

- Enormous potential for development and deployment of end-to-end Agricultural IoT solutions in and around Himachal Pradesh
- Especially beneficial for small farms
- ☐ Yield prediction
- Environmental monitoring
- ☐ Pest detection
- Water stress and smart irrigation
- □2-5 years project

**IIT Mandi Faculty** 

Dr. Srikant Srinivasan

IoT systems for agriculture

Dr. Shyam Masakapalli

Plant physiology and metabolism

Dr. A. D. Dileep

Machine Learning

Dr. Sriram Kailasam

Big Data systems



#### Conclusions

- Disruptive changes in technology
   ⇒Novel approaches to resource
   management
  - IoT pervasive, low-cost sensors
  - Data mining and analytics
  - Machine learning AI
- FarmerZone: a pilot project to apply these new technologies to optimise resource usage in farming

tag@iitmandi.ac.in

www.iitmandi.ac.in



## To Participate

- Opportunities for MS/PhD research scholars and full-time project engineers
- Contact:

```
srikant@iitmandi.ac.in
tag@iitmandi.ac.in
```